<table>
<thead>
<tr>
<th>Spis treści</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Spis użytych skrótów</td>
<td>6 Abbreviations</td>
</tr>
<tr>
<td>7 Wstęp</td>
<td>7 Introduction</td>
</tr>
<tr>
<td>9 Jak zoptymalizować ustawienia aparatu USG do badania zapalenń tętnic</td>
<td>9 How to optimize ultrasound machine settings for arteritis examination</td>
</tr>
<tr>
<td>13 Olbrzymiokomórkowe zapalenie tętnic</td>
<td>13 Giant cell arteritis</td>
</tr>
<tr>
<td>133 Polimialgia reumatyczna</td>
<td>133 Polymyalgia rheumatica</td>
</tr>
<tr>
<td>139 Choroba Takayasu</td>
<td>139 Takayasu arteritis</td>
</tr>
<tr>
<td>153 Piśmiennictwo</td>
<td>153 References</td>
</tr>
<tr>
<td>155 Podziękowania</td>
<td>155 Acknowledgements</td>
</tr>
<tr>
<td>Spis użytych skrótów</td>
<td>Abbreviations</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>CS</td>
<td>CS</td>
</tr>
<tr>
<td>GCA</td>
<td>GCA</td>
</tr>
<tr>
<td>IM</td>
<td>IM</td>
</tr>
<tr>
<td>IMC</td>
<td>IMC</td>
</tr>
<tr>
<td>PMR</td>
<td>PMR</td>
</tr>
<tr>
<td>TA</td>
<td>TA</td>
</tr>
<tr>
<td>TAK</td>
<td>TAK</td>
</tr>
<tr>
<td>USG</td>
<td>USG</td>
</tr>
<tr>
<td>– głukokortykosteroidy</td>
<td>– glucocorticoids</td>
</tr>
<tr>
<td>– ołbrzymiokomórko zapalenie tętnic</td>
<td>– giant cell arteritis</td>
</tr>
<tr>
<td>– intima-media</td>
<td>– intima-media</td>
</tr>
<tr>
<td>– kompleks intima-media</td>
<td>– intima-media complex</td>
</tr>
<tr>
<td>– polimialgia reumatyczna</td>
<td>– polymyalgia rheumatica</td>
</tr>
<tr>
<td>– tętnica skroniowa powierzchowna</td>
<td>– superficial temporal artery</td>
</tr>
<tr>
<td>– choroba Takayasu</td>
<td>– Takayasu arteritis</td>
</tr>
<tr>
<td>– ultrasonografia</td>
<td>– ultrasonography</td>
</tr>
</tbody>
</table>
Wstęp

Olbrzymiokomórkowe zapalenie tętnic (giant cell arteritis, GCA) jest najczęstszym układowym zapaleniem naczyń [1]. Według definicji zawartej w konsensusie z Chapel Hill jest to autoimmunologiczne zapalenie aorty i jej dużych gałęzi, najczęściej czaszkowych gałęzi tętnicy szyjnej zewnętrznej (ryc. 1a) [2]. Kryteria klasifikacyjne GCA z 1990 r. wg American College of Rheumatology (ACR) odnoszą się jedynie do postaci z zapaleniem tętnic skroniowych [3]. Obawy tej choroby znajdują się w obszarze zainteresowań przechodzących okulistów (zaburzenia krążenia gałkowego, ślepoty, niewydolność oczną oraz krążenia tętniczy). Choroby tętnicowe zakaźne (gorączka o nieznanej przyczynie, objawy ogólnie przypominające proces nowotworowy), choroby naczyńowe i angiologiczne (zapalenie tętnic, choroby tętnicowe) oraz reumatologów (towarzyszące polimialgia reumatyczna, PMR) [4]. Lekarze każdej z tych specjalizacji medycznych stosują badanie ultrasonograficzne (USG). Odpowiednie szkolenie osób wykonujących badania USG na temat zapalnych zmian naczyńowych oraz niewielka modyfikacja ustawień aparatu pozwalają na właściwą diagnostykę GCA.

W diagnostyce GCA najważniejszą rolę odgrywa badanie tętnic skroniowych powierzchniowych (superficial temporal artery, STA) oraz innych dużych tętnic: pachowych, podobocznych, szyjnych wspólnotowych i tętnic (STA). Zmiany mięśniowe, które w grupie wiekowej chorych na GCA wynagradzają różnicowaniem z zapaleniem, różnią się wyglądem i lokalizacją (często w naczyńach szarych, biodrowych i udowych) [6]. Diagnostyka zapalenia naczyń w badaniu USG jest procesem dynamicznym: w razie zaistnienia wątpliwości po badaniu tętnic skroniowych w przypadku pojawienia się objawów GCA badanie należy rozszerzyć na inne obszary naczyńowe. Ma to na celu ocenę obecności zapalnego pogrubienia ściany, rozległości i nasilenia zmian mięśniowych, z którymi należy różnicować zmiany zapalne. Wniosek końcowy powinny być oparte na obrazie USG w połączeniu

Introduction

Giant cell arteritis (GCA) is the most common type of vasculitis [1]. According to the Chapel Hill definition, it is an autoimmune inflammation of the aorta and its major branches, most commonly involving the large supra-aortic branches (Fig. 1a) [2]. However, the 1990 American College of Rheumatology (ACR) GCA classification criteria refer to temporal arteritis only [3]. Giant cell arteritis signs and symptoms extend the field of specialties involved: ophthalmologists (ocular circulatory disorders, blindness), geriatricians (occurrence almost exclusively after the age of 50 years), neurologists (headache), internists and infectious disease specialists (fever of unknown origin, cancer-like symptoms), vascular surgeons and angiologists (inflammatory stenosis of the arteries), radiologists and rheumatologists (accompanying polymyalgia rheumatica, PMR) [4]. Ultrasound has been used as a diagnostic tool in each of these medical fields. Adequate training in ultrasound application in inflammatory vascular lesions and a correct adjustment of the machine settings is important in order to correctly diagnose GCA.

For the GCA diagnostics the ultrasound is applied to examine superficial temporal arteries (TA), and other large arteries: axillary, subclavian, common carotid, femoral arteries and aorta [5]. Atherosclerotic changes in GCA patient: age group must be differentiated from vascular inflammation. They differ in morphology and distribution (being more common in carotid, inguinal and femoral arteries) [6]. Ultrasound application for GCA diagnostics needs to be dynamic: in case of inconclusive changes in TA it should be expanded to include more arteries. The purpose should be not only to look for arterial inflammation but also to assess the extent and distribution of atherosclerotic plaques that need to be differentiated from inflammatory changes. Final conclusions should be based on the combination of ultrasonographic findings and clinical manifestations that are typical for GCA [7]. Polymyalgia rheumatica manifesta-
z obrazem klinicznym GCA [7]. Objawy PMR, które można potwierdzić za pomocą badania USG układu mięśniowo-szkieletowego, zwiększają prawdopodobieństwo współwystępowania GCA [8].

Choroba Takayasu (Takayasu arteritis, TAK) w Europie występuje rzadko. W diagnostyce TAK największe znaczenie ma badanie tętnic podobojczykowych, szyjnych wspólnych, kręgowych i aorty [9]. Obraz ultrasonograficzny i histopatologiczny zapalenia aorty i jej największych gałęzi w TAK i GCA jest podobny. Typowy dla TAK młody wiek zachorowania sprawia, że znika problem różnicowania z miażdżyca w TAK o krótkim czasie trwania. U osób starszych różnicowanie miażdżyca z zapaleniem naczyń o długim czasie trwania może być trudniejsze, czego powodem jest częste występowanie w tym wieku miażdżyca, a także przyspieszony proces miażdżycowy w zmienionych zapalnie tętnicach [10]. Dodatkowych informacji na temat obecności aktywnego zapalenia dużych tętnic, a nie tylko zmian struktury ściany, może dostarczyć pozytonowa tomografia emisyjna (positron emission tomography, PET) [11] lub badanie USG z kontrastem [12].

Ultrasonograficzny objaw halo jest najważniejszą cechą zapalenia tętnic. Jest to hypochogeniczny w stosunku do otaczającej tkanki, jednorodny obszar pomiędzy światłem naczynia a otaczającą tkanką [13]. Objaw halo może być symetryczny lub teczkowato ekscentryczny [7]. Może on zostać potwierdzony obecnością objawu uciskowego: halo nie zniká po powodującym zamknięciu naczyń uciskiem/lówką aparatu [14]. Redukcja grubości objawu halo w badaniu po leczeniu również potwierdza rozpoznanie [15].

Zjawisko halo pochodzi od nacieku zapalnego naczynia i tkanki około tętnic wraz z przerostem ściany naczynia [16, 17]. Obiekt naciek zapalny w TAK powoduje, że objaw jest często bardziej hypochogeniczny niż w dużych tętnicach i może obejmować obszar większy niż średnica naczynia. Termin „halo” używa się do opisu zmian zarówno w TAK, jak i w innych dużych tętnicach. Bardziej trafnym określeniem w odniesieniu do dużych tętnic byłoby „zapalne pogrubienie ściany” lub „zapalne pogrubienie kompleksu intima-media” (IMC). Tak zmieniona ściana w obrazie USG ma zaburzoną strukturę z zatarcią granicą intima-media (IM) [18]. Objaw halo może zniknąć już od kilku dni do kilku tygodni po włączeniu leczenia [15]. Przerost ściany tętnic często nie jest całkowicie odwracalny [19].

Takayasu arteritis (TAK) is rare in Europe. For the diagnosis of TAK, the most relevant is the ultrasound examination of subclavian, vertebral, common carotid arteries and aorta. Aortitis and large vessel vasculitis in TAK and GCA are similar in both ultrasound imaging and histopathology. Onset in young age reduces the necessity of differentiating TAK of short duration with atherosclerosis. Differentiation of long-lasting large vessel arteritis with atherosclerosis may be more challenging because vasculitis increases vessel wall atherosclerosis, and both diseases may coexist. Additional data not only on large vessel wall structure but also on activity of vessel wall inflammation may be supplied by positron emission tomography (PET) or contrast-enhanced ultrasound.[12]

Ultrasonographic halo sign is the most important sign of the arterial inflammation. It is hypoechoic – as compared to the surrounding tissue – homogeneous, and easily identifiable between the vessel lumen and the perivascular hyperechoic tissue. It can be eccentric or circumferential. Halo sign may be confirmed by a positive “compression sign”: it does not disappear after applying pressure with the probe even if the vessel lumen remains occluded. Halo thickness reduction during the follow-up examination after treatment initiation further confirms the diagnosis.

Halo phenomenon originates from inflammatory infiltration in the vessel wall and surrounding tissue together with wall hypertrophy.[16, 17]. Rich infiltration in TA may result in a more hypoechoic halo sign with its thickness exceeding the diameter of the vessel. The term “halo” is used to describe both involvement of TA and large arteries. A more accurate term for large arteries is “inflammatory thickening of the wall” or “inflammatory thickening of intima-media complex (IMC).” In that case arterial wall structure is distorted without clear intima-media (IM) border.[18]. Halo sign may disappear within a period of a few days to weeks from treatment onset.[15]. Hypertrophy of the arterial wall may be not completely reversible [19].